Energy efficiency of mechanical-biological waste treatment

The different types or sources of energy (electricity, gas, diesel and heat) cannot be compared or balanced in a direct way due to their different energetic qualities, despite they are all stated in the same unit (kWh).

In Germany, 48 mechanical-biological waste treatment (MBT) plants with a total capacity of 5.5 million Mg/y are in operation at the moment. In 2007 the authors conducted a survey that amongst others assessed data on the energy balance of the practical operation of these plants. Based on these data the energy efficiency of those plants was examined and starting points for optimizing measures were derived.
In the conducted survey participated 44% of all German MBT plants, processing about 34 % of the waste quantity that is treated annually by MBT in Germany. The survey considered the electricity and diesel consumption in the operational process as well as the separation rate of refuse derived fuel (RDF) from the process, ranging on average at about 46% of the plant input quantity, and its respective calorific value. It also assessed the efficiency of the produced RDF for electricity and heat production and the potential amount of heat and electricity generated from the biogas produced by the 5 considered plants with an integrated anaerobic digestion.
The energy was balanced on a primary energy stage. In particular it became clear that by an energetic utilization of the separated waste materials of high calorific value a high energy efficiency could be achieved for MBT plants. The results of the survey also show that - provided the respective plant design - MBT with a focus on stabilization (MBS) may reach similarly high RDF separation rates as biodrying plants (MBD). In addition, a further increase of energy efficiency of MBT through an integration of an anaerobic digestion or through the provision of biogas as renewable energy can be achieved.
A MBT with a high grade recovery of the RDF fraction represents a flexible solution which - with regard to energy efficiency - may have advantages compared to a traditional waste incineration plant on the greenfield.



Copyright: © European Compost Network ECN e.V.
Quelle: Orbit 2008 (Oktober 2008)
Seiten: 12
Preis: € 8,00
Autor: Dr.-Ing. Wolfgang Müller
Prof. Dr. Rainer Wallmann
Prof. Dr.-Ing. Klaus Fricke
Dipl.-Ing. Jürgen Hake
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Erfahrungen bei der Beratung von Vergärungs- und Kompostierungsanlagen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2024)
Die Verwendung von Biogut- und Grüngutkompost ist eine Möglichkeit, Nährstoffdefizite im Ökolandbau zu vermeiden sowie die Bodenfruchtbarkeit zu erhalten und sogar zu steigern.

Klimaresilienter Städtebau
© Lexxion Verlagsgesellschaft mbH (12/2023)
Instrumente, Chancen und Hindernisse bei der Klimaanpassungsplanung

Klimawandelbewältigung im Non-ETS Sektor in Deutschland und Österreich
© Lexxion Verlagsgesellschaft mbH (12/2023)
Ein neues Rechtsgebiet im Vergleich