Zur Bewertung des aktuellen und zukünftigen Risikos von Wassermangel für die Wälder Baden-Württembergs wurden Simulationen mit dem Wasserhaushaltsmodell LWF-Brook90 durchgeführt. Die Ergebnisse zeigen, dass die Intensität des Wassermangels seit 1990 zugenommen hat. Modellierungen auf der Basis von Klimaprojektionen prognostizieren regional unterschiedliche Änderungen im Wasserhaushalt. Im Szenario RCP 8.5 ist auch in aktuell noch klimatisch begünstigten und damit gut wasserversorgten Regionen mit einer spürbaren Verschärfung des Trockenheitsrisikos zu rechnen.
1 Hintergrund
Der Wasserhaushalt ist ein zentraler Standortsfaktor, welcher das Wachstum und die Vitalität von Bäumen und Wäldernbestimmt, die Verfügbarkeit der Nährstoffe für die Waldbäume beeinflusst und die Prädisposition von Waldbeständen für biotische (z. B. Borkenkäfer) und abiotische (z. B. Windwurf)Schäden erhöhen kann. Der Wasserhaushalt trägt außerdemzu wichtigen Ökosystemleistungen von Wäldern, wie die Bereitstellung von Trinkwasser oder den Erhalt von Feuchtgebieten,bei.
Wechselwirkungen zwischen dem einwirkenden Klima, denBöden und der Vegetation steuern den Wasserhaushalt von Wäldern. Der Klimawandel hat Auswirkungen auf diese Wechselwirkungen und verändert die hydrologischen Standortsverhältnisse. So sind steigende Temperaturen mit einer Verschiebungund einer Verlängerung der Vegetationsperiode verbunden, was Auswirkungen auf das Wachstum und den Wasserbedarfvon Bäumen hat. Eine seltenere Schneebedeckung imWinter verändert die Aufsättigungsphasen der Bodenwasserspeicher und führt zu veränderten Startbedingungen für die Vegetation im Frühjahr.
Der Beitrag stellt aktuelle Arbeiten der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg zu Prognosen von erwartbaren Veränderungen im Wasserhaushalt von Waldstandortenvor. Die Einschätzung des Wasserhaushalts findet beispielsweise Eingang in Baumarteneignungs- und Vulnerabilitätskarten[3] oder in Borkenkäferfrühwarnsysteme. Neben derÄnderung der mittleren Wasserhaushaltsverhältnisse an einemStandort werden hierfür auch veränderte Extrembedingungen
(z. B. Trocken- oder Staunässephasen) eingeschätzt.
2 Material und Methoden
2.1 Wasserhaushaltsmodell LWF-Brook90
Für die Berechnung des Standortswasserhaushalts wurde das forsthydrologische Simulationsmodell LWF-Brook90 eingesetzt[4]. LWF-Brook90 simuliert den täglichen Bodenwasserhaushalt in einer eindimensionalen Bodensäule als Ergebnis von Niederschlagsinfiltration, Wasserbewegung im Boden und Wasserentzug durch Verdunstung (Transpiration, Boden- bzw. Schneeevaporation und Interzeptionsevaporation). LWF-Brook90 wird mit meteorologischen Eingangsdaten (Niederschlag, maximale und minimale Lufttemperatur, Globalstrahlung oder Sonnenscheindauer, Dampfdruck, Windgeschwindigkeit) in täglicher Auflösung angetrieben. Wichtige Ausgabegrößen des Modells beinhalten Daten zur Verdunstung (Transpiration, Interzeption),zum Bodenwasser (Bodenfeuchten, Bodenwasserspannungen) und zur Sickerwasserbewegung.
| Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
| Quelle: | Wasserwirtschaft - Heft 06 (Juni 2021) |
| Seiten: | 4 |
| Preis: | € 10,90 |
| Autor: | Dr. Heike Puhlmann Dr. Axel Albrecht Thilo Wolf |
| Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Europäische Rechtsvorgaben und Auswirkungen auf die Bioabfallwirtschaft in Deutschland
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Bioabfälle machen 34 % der Siedlungsabfälle aus und bilden damit die größte Abfallfraktion im Siedlungsabfall in der EU. Rund 40 Millionen Tonnen Bioabfälle werden jährlich in der EU getrennt gesammelt und in ca. 4.500 Kompostierungs- und Vergärungsanlagen behandelt.
Vom Gärrest zum hochwertigen Gärprodukt - eine Einführung
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Auch mittel- bis langfristig steht zu erwarten, dass die Kaskade aus anaerober und aerober Behandlung Standard für die Biogutbehandlung sein wird.
Die Mischung macht‘s - Der Gärrestmischer in der Praxis
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Zur Nachbehandlung von Gärrest aus Bio- und Restabfall entwickelte Eggersmann den Gärrestmischer, der aus Gärresten und Zuschlagstoffen homogene, gut belüftbare Mischungen erzeugt. Damit wird den besonderen Anforderungen der Gärreste mit hohem Wassergehalt begegnet und eine effiziente Kompostierung ermöglicht.