Das Aufkommen von verbrauchten Lithium-Ionen-Batterien stellt ein wachsendes globales Problem dar. Speziell die Batteriesysteme aus automobilen Anwendungen können Dimensionen von mehreren hundert Kilogramm erreichen. Die Speichersysteme stellen nicht nur eine wichtige Quelle von sekundären Rohstoffen dar, sondern bergen auch ein hohes Gefahrenpotential. Damit stellt das Recycling dieses in der Menge sukzessiv zunehmenden Abfallstroms eine komplexe Aufgabe dar. Ein häufig eingesetzter erster Schritt im Recycling ist das manuelle Demontieren der Speichersysteme bis auf Modul- oder Zellebene. Die folgende Abhandlung ver-gleicht den Aufwand der mechanischen Aufbereitung mehrere Batteriesysteme in Abhängigkeit der Demontagetiefe und die sich daraus ergebenden Vor- und Nachteile. Dafür wurden verschiedene Batteriesysteme manuell demontiert und sowohl die Zeiten als auch die damit gewinnbaren Materialmengen bestimmt. Darüber hinaus wurden Batteriezellen und die Modulperipherie separat zerkleinert, klassiert und sortiert, um den Aufwand und Trennerfolg einer mechanischen Aufbereitung zu bestimmen.
Grundsätzlich muss unterschieden werden, ob ein Recycling oder ein Reuse der Komponenten angestrebt wird. Beim Reuse werden die Komponenten dem gleichen Verwendungszweck zugeführt, den sie bereits erfüllt haben. Dabei finden naturgemäß keine Zerstörung oder Stoffumwandlungen statt. Denkbare Komponenten eines Batteriesystems dafür wären unter anderem das Systemgehäuse oder das Batterie-Management-System (BMS). Diese können in der Regel durch nicht-zerstörende Demontageschritte abgetrennt werden, insofern sie bspw. durch Schraubverbindungen verankert sind.
Für eine Vielzahl der beim Reuse nicht genannten Komponenten ist eine allgemeine stoffliche Verwertung das Ziel, welche landläufig als Recycling bezeichnet wird (Werner et al. 2020). Dies kann eine mechanische, pyro- und/oder hydrometallurgische Aufbereitung beinhalten, d.h. der teilweise oder vollständige Aufschluss des Materialverbunds mit anschließender Aufkonzentration der Wertstoffe.
Um einer Beschädigung der Batteriezellen in der Nutzungsphase entgegenzuwirken, werden diese in einem stabilen Systemgehäuse vor äußeren mechanischen Einwirkungen geschützt. Häufig besteht das Gehäuse aus einer Aluminiumlegierung. In ihm sind typischerweise neben den Modulen oder Zellstacks das BMS, Kühlelemente und elektrische Verbinder untergebracht. Speziell bei Batteriesystemen aus reinen Elektromobilen ist eine Demontage sinnvoll, da sie bereits einen hohen Anteil an Material zerstörungsfrei und sortenrein abtrennt. Weiterhin können die freigelegten Module o-der Batteriezellen einer weiteren beispielsweise mechanischen Verarbeitung zugeführt werden, wobei die notwendigen Dimensionen für die entsprechenden Anlagen sinken.
Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben |
Quelle: | Recy & Depotech 2020 (November 2020) |
Seiten: | 6 |
Preis: | € 3,00 |
Autor: | Tony Lyon Dr.-Ing. Thomas Mütze Professor Dr.-Ing. Urs Alexander Peuker |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.