Die Prozessentwicklung für das Recycling von sich verändernden, metallhaltigen Reststoffen stellt immer wieder eine Herausforderung für die Forschung dar. Aufgrund der Komplexität der einzelnen Prozessschritte ergibt sich häufig ein hoher Energie- und Chemikalienverbrauch. Aus diesem Grund stellt vor allem auch die Optimierung von Verfahrenskonzepten einen zentralen Punkt im Bereich des Recyclings von Lithium-Ionen-Batterien dar. Der entwickelte SeLiReco-Prozess zeichnet sich vor allem durch die gemeinsame Rückgewinnung eines hochwertigen Vorstoffes auf Kobalt-Nickel-Basis und die selektive Präzipitation des enthaltenen Lithiums aus. Diese Thematik wird in der Forschung immer wieder diskutiert, konnte aber bisher keine industrielle Anwendung finden. Diese Prozesskombination ermöglicht dies aufgrund der genauen Erforschung und Optimierung dieses Verfahrensschrittes.
Durch eine Technologieentwicklung zur Verarbeitung von komplexen Rückständen mit schwankender Zusammensetzung im Bereich der Metallurgie sowie einer Erarbeitung von Verfahren zur simultanen Multimetallrückgewinnung aus primären und sekundären Quellen kann eine Verbesserung der Rohstoffverfügbarkeit realisiert werden. Vor allem bisher nicht verwertbaren, metallhaltigen Reststoffen wird eine zentrale Bedeutung zugeschrieben, da diese bislang entsorgt und dem Wertstoffkreislauf entzogen wurden. Im Bereich des Recyclings von Lithium-Ionen-Batterien stehen vor allem die Wertmetalle Kobalt und Nickel im Vordergrund, während anderen Elementen wie Lithium oder Mangan nur eine untergeordnete Rolle zukommt. Dabei lassen sich die angewandten Verfahren in pyrometallurgische und hydrometallurgische Aufarbeitungstechnologien unterteilen. Vor dem eigentlichen Recyclingprozess laufen Vorbehandlungsschritte ab, die aufgrund der komplexen Zusammensetzung der Einsatzstoffe notwendig sind und entweder mechanisch oder thermisch erfolgen können. (Martens 2011; Hanisch et al. 2015) Die Entwicklung pyrometallurgischer Recycling-verfahren wird hauptsächlich durch die Möglichkeit der effizienten und relativ einfachen Rückgewinnung von Metallen aus verschiedenen Batterietypen vorangetrieben. Pyrometallurgische Prozesse haben den Vorteil, dass sie für Gemische verschiedener Batterien zuverlässig arbeiten und die Möglichkeit eröffnen, auch mit dem Prozess-weg für Primärmaterialien kombiniert zu werden. Das Schmelzen bei hohen Temperaturen führt jedoch zu einem hohen Energiebedarf und der Erzeugung eines zu reinigenden Abgases.
| Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben |
| Quelle: | Recy & Depotech 2020 (November 2020) |
| Seiten: | 4 |
| Preis: | € 2,00 |
| Autor: | Priv.-Doz. Dr. mont. Stefan Luidold Priv.-Doz. Dr. mont. Stefan Luidold Dipl.-Ing. Dr. Jürgen Antrekowitsch Matthias Honner Ing. DI Dr. Astrid Arnberger |
| Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.
Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.
In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.