Für Wellenreiter stellt das 'River Surfing', bei dem auf einer stehenden Welle im Fluss gesurft wird, eine vielversprechende Alternative zu überfüllten Stränden am Meer dar. Um Fließgewässer im urbanen Raum attraktiver zu gestalten und geeignete Sportstätten für Surfer zu schaffen, gibt es daher vielerorts Überlegungen für den Bau solcher künstlichen Surfwellen. Der in dieser Studie durchgeführte physikalische Modellversuch hilft hierbei, das Verständnis dieser Wellen zu erweitern sowie Ingenieure und Ingenieurinnen bei der Planung und dem Betrieb von Wellenanlagen mit neuen Erkenntnissen zu unterstützen.
Mit großer Begeisterung gehen weltweit immer mehr Wassersportler dem Nervenkitzel des Wellensurfens nach. Auch in Deutschland nehmen viele Surfer und Surferinnen lange Autofahrten zu geeigneten Küstenregionen oder Flüge in entfernte Länder in Kauf, um die populäre Sportart auszuüben. Da vorhandene Surfspots immer stärker frequentiert werden, gerät vor allem im urbanen Raum die Erzeugung von künstlichen Wellen immer mehr in den Fokus von sowohl Sportlern als auch Ingenieuren. Ziel des klassischen Surfens am Meer ist es, so lange wie möglich auf der Welle zu bleiben bis sie aufgrund der Überwindung der Oberflächenspannung am Wellenkamm in sich zusammenbricht. Im Gegensatz dazu werden Flusswellen durch eine stationäre Welle erzeugt, die aus hydraulischer Sichtweise einem lokalen Wechselsprung entspricht (Bild 1). Allerdings kann nur ein bestimmter Wechselsprungtyp, die so genannte 'maximum wave", die äußerst sensibel auf hydraulische Veränderungen reagiert [1], gesurft werden. Eine Welle wird durch ihre Höhe und Länge charakterisiert, welche der Höhen- und Längendifferenz zwischen dem höchsten Punkt (Wellenspitze) und dem niedrigsten Punkt (Wellental) entsprechen. Eine surfbare Welle sollte mindestens eine Höhe von 0,75 m aufweisen, damit die Surfer ausreichend Platz zum Manövrieren haben, wobei eine Höhe von 1,00 m von den Surfern und Surferinnen bevorzugt wird. Die Wellenneigung sollte zwischen 30-70 % betragen [2].
Die Randbedingungen für die durchgeführten Untersuchungen liefert das Projekt 'Neckarwelle", das zum Ziel hat, in Stuttgart-Untertürkheim eine Surfanlage in einem Seitenarm des Neckars zu integrieren. Entscheidend für die Erzeugung einer 'maximum wave" ist die Wasserspiegeldifferenz zwischen dem Ober- und Unterwasser. An dem Standort ist oberstrom der geplanten Anlage eine Wasserkraftanlage installiert, die je nach Wasserverfügbarkeit schwankende Abflüsse zwischen 5 m3/s und 50 m3/s nach unterstrom abgibt. Der Wasserstand unterhalb der Wasserkraftanlage ist direkt mit dem Neckar verbunden und wird von einer stromabwärts gelegenen Staustufe beeinflusst. Dadurch ergibt sich als Randbedingung eine Unterwasserhöhe von 2,4 m +/- ca. 0,4 m, auf die die Wellenanlage ausgerichtet werden sollte. Der Wasserstand zwischen Kraftwerk und der Wellenanlage darf um maximal 1,0 m erhöht werden [3]. Zusätzlich sollte die geplante Sportstätte auch für Kajakfahrer zugänglich und nutzbar sein.
Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
Quelle: | Wasserwirtschaft - Heft 07/08 (August 2020) |
Seiten: | 5 |
Preis: | € 10,90 |
Autor: | Benedikt Mester Prof. Markus Noack Prof. Dr.-Ing. Silke Wieprecht |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.