Optimierung eines Verfahrens zur Entsedimentation von Stauräumen und Reduktion von Methanemissionen mittels Laser-Doppler-Anemometrie (LDA)

Am Labor für Wasser und Umwelt (LWU) der TH Köln wurde ein Prototyp zur Entsedimentation von Stauseen entwickelt, mit dessen Einsatz die Sedimentdurchgängigkeit von Gewässern wiederhergestellt und die Emission klimaschädlicher Treibhausgase deutlich reduziert oder sogar vermieden werden kann. Der entwickelte Prototyp stellt das weltweit erste Verfahren seiner Art zur Reduzierung klimaschädlicher Treibhausgasemissionen dar. Die aus Stauseen entweichenden Treibhausgase (im Wesentlichen Methan) entstehen bei den Abbauprozessen von organischen Stoffen, die kontinuierlich aus dem Einzugsgebiet in das Reservoir eingetragen und dort abgelagert werden. Die Stauraumverlandung führt zur Reduktion des Speichervolumens und schränkt somit die Nutzung der Anlage (z. B. Erzeugung von Wasserkraft, Trinkwasserversorgung, Hochwasserschutz) erheblich ein und gefährdet so die Daseinsvorsorge. Herkömmliche Methoden, Stauräume wieder
zu entsedimentieren, sind oftmals kostspielig und belastend für die Ökologie des Stausees. Das innovative Verfahren erodiert mittels einer kontinuierliche arbeitenden Lösungs- und Aufnahmeeinheit die Sedimente vom Grund des Stausees und transportiert diese über eine Transportleitung über den Stausee, wo es anschließend kontrolliert ins Unterwasser abgegeben wird. Technischer Kern des Verfahrens, die Lösungs- und Aufnahmeeinheit, wurde mittels Laser-Doppler-Anemometrie (LDA) untersucht und optimiert.


Jedes Fließgewässer trägt anorganische und organische Feststoffe mit sich, welche aus dem Einzugsgebiet in das Gewässer eingetragen werden. Diese Feststoffe (Sedimente) werden in einem kontinuierlichen Erosions- und Sedimentationsprozess flussabwärts transportiert, wobei sich unter natürlichen Umständen im Laufe der Zeit ein Gleichgewicht einstellt, dass die Morphologie eines Flusses auf natürliche Art und Weise prägt. Das Stauen eines Fließgewässers stört dieses Gleichgewicht aus Erosion und Sedimentation und führt aufgrund der reduzierten Strömungsgeschwindigkeit innerhalb des Stauraums zu einem verstärkten Sedimentationsprozess. Dies wiederum führt zum Verlust von Speichervolumen und zur Verlandung der Anlage mit der Folge, dass dessen Funktion eingeschränkt oder sogar komplett verloren geht. Der Sedimentmangel im Unterwasser beeinträchtigt die Gewässerökologie (Veränderung des Interstitials, Nahrungsmangel etc.) und führt zu verstärkten Erosionsprozessen, welche strukturelle Schäden am Gewässer und auch an Bauwerken zur Folge haben können. Für die Instandhaltung von Stauräumen und Wiederherstellung des ökologischen Gleichgewichtes der Gewässer ist es unausweichlich, die Sedimentablagerungen im Stausee zu reduzieren und, soweit wie möglich, die natürliche Sedimentdurchgängigkeit wiederherzustellen. Zunehmende und häufigere und intensivere Starkregenereignisse, Nutzungsänderungen im Gewässerumfeld etc., verstärken den Sedimenteintrag aus den Einzugsgebieten in die Gewässer und somit die oben beschriebene Problematik. Dieser Handlungsbedarf wird unter Aspekten des Klimaschutzes noch deutlich verstärkt. Die in Stauräumen akkumulierten organischen Sedimente werden unter anaeroben Bedingungen abgebaut, wodurch das Treibhausgas Methan (CH4) entsteht, welches zum größten Teil über die Wasseroberfläche (Haupttransportpfad) in die Atmosphäre emittiert wird. Mit einem um den Faktor 34 (bezogen auf einen 100-Jahres-Zeitraum) höheren Treibhausgaseffekt als CO2 haben die Methangasemissionen aus Stauräumen ein erhebliches Klimaschadenspotenzial und Forschungsergebnisse belegen dessen globale hohe Relevanz [1]. So wurden in einem Schweizer Stausee (Wohlensee) durchschnittliche Methanemissionen von 150 mg/(m²·d) gemessen. Hochgerechnet entspricht dies einer jährlichen Emission von etwa 150 t Methan, was einem CO2-Ausstoß von 25 Mio. gefahrenen Autokilometern gleichkommt [2].



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft - Heft 06 (Juni 2020)
Seiten: 7
Preis: € 10,90
Autor: Lukas Glaremin
M.Sc. Yannick Dück
Prof. Dr.-Ing. Christian Jokiel
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Europäische Rechtsvorgaben und Auswirkungen auf die Bioabfallwirtschaft in Deutschland
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Bioabfälle machen 34 % der Siedlungsabfälle aus und bilden damit die größte Abfallfraktion im Siedlungsabfall in der EU. Rund 40 Millionen Tonnen Bioabfälle werden jährlich in der EU getrennt gesammelt und in ca. 4.500 Kompostierungs- und Vergärungsanlagen behandelt.

Vom Gärrest zum hochwertigen Gärprodukt - eine Einführung
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Auch mittel- bis langfristig steht zu erwarten, dass die Kaskade aus anaerober und aerober Behandlung Standard für die Biogutbehandlung sein wird.

Die Mischung macht‘s - Der Gärrestmischer in der Praxis
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Zur Nachbehandlung von Gärrest aus Bio- und Restabfall entwickelte Eggersmann den Gärrestmischer, der aus Gärresten und Zuschlagstoffen homogene, gut belüftbare Mischungen erzeugt. Damit wird den besonderen Anforderungen der Gärreste mit hohem Wassergehalt begegnet und eine effiziente Kompostierung ermöglicht.