Der Einsatz biologisch abbaubarer biobasierter Kunststoffe kann durch die Nutzung von Produktionsabwässern aus der Lebensmittel- und Getränkeindustrie unterstützt werden. Über Untersuchungen
zur integrierten Herstellung von biologisch abbaubaren biobasierten Kunststoffen aus verschiedenen Industrieabwässern bestehender Kläranlagen mittels bakteriellen Mischkulturen wird berichtet. Ihre potenzielle Anwendung als Ersatz für petrochemische Kunststoffe wird diskutiert.
Kunststoffe sind heute ein unverzichtbarer Teil unseres täglichen Lebens. Trotz zahlreicher nationaler und internationaler Initiativen gibt es für sie aber keine integrierten Produktzyklen, die Herstellung, Nutzung und Recycling umfassen. Die meisten heute genutzten Kunststoffe sind petrochemischen Ursprungs und verbrauchen nicht-regenerative Rohstoffe, produzieren Treibhausgase und belasten bei mangelndem Recycling und unsachgemäßer Entsorgung unsere Umwelt über Jahrzehnte.
Biobasierte Kunststoffe, die unter marinen Bedingungen abbaubar sind, werden nicht alle diese Probleme lösen, können aber die mittlere Verweilzeit unsachgemäß entsorgter Kunststoffe in der Umwelt deutlich verkürzen. Die Weltproduktion von Kunststoffen erreichte im Jahr 2018 nach einem exponentiellen Wachstum während der letzten Jahrzehnte einen Wert von 359 Mio. t [1]. 2,61 Mio. t davon entfielen auf Biokunststoffe, von denen 38,5 % biologisch abbaubar waren und 3,7 % aus Polyhydroxyalkanoaten (PHA) bestanden. Bis 2023 wird ein Anstieg der Biokunststoffproduktion auf jährlich 4,35 Mio. t erwartet, von denen 3,8 % auf PHAs entfallen, was einem absoluten Anstieg um 71 % entspricht [2]. Hauptproduzent von PHA ist derzeit China mit jährlich 50.000 t der Marke ENMAT, die aus Saccharose hergestellt werden. In Deutschland werden jährlich etwa 10.000 t PHA unter der Marke Biomer hergestellt, ebenfalls aus Saccharose.
PHA sind Polymere aus Hydroxyfettsäuren, die von vielen Bakterien zur zellinternen Kohlenstoffspeicherung gebildet werden, wenn Phosphor- oder Stickstoffmangel die normale Kohlenstoffaufnahme verhindern. Da der bisherige Einsatz von kostenintensiven Kohlenstoffquellen und bakteriellen Reinkulturen die Produktion stark verteuert, stellt die alternative Nutzung von Industrieabwässern mit hohem Kohlenstoffgehalt als Substrat einen interessanten Ansatz dar, wobei die Reinkulturen durch bakterielle Mischkulturen ('microbial mixed cultures", MMC) mit erhöhtem Anteil an PHA-Bildnern ersetzt werden.
Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
Quelle: | Wasser und Abfall 06 (Juni 2020) |
Seiten: | 4 |
Preis: | € 10,90 |
Autor: | Pravesch Tamang Aniruddha Bhalerao Dr. Carmen Arndt Professor Dr.-Ing. Karl-Heinz Rosenwinkel Prof. Dr. Regina Nogueira |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.