Das Saugrohr einer Niederdruckanlage verbindet die Turbine mit dem freien Unterwasserspiegel. Gleichzeitig wandelt es einen Teil der hinter dem Laufrad vorherrschenden Strömungsenergie in Druckenergie um, wodurch die Leistung der Turbine wesentlich gesteigert wird. Eine Leistungssteigerung erfolgt jedoch nur, wenn alle Komponenten aufeinander abgestimmt sind. Das Saugrohr einer kleinen S-Turbine wird dahingehend für einen großen Betriebsbereich optimiert. Zugleich werden instationäre Phänomene analysiert, um den Durchfluss betriebssicher zu erhöhen.
Das Saugrohr einer hydraulischen Turbine erfüllt zwei grundlegende Funktionen. Zunächst stellt es das Verbindungselement zwischen der Turbine und dem Unterwasser des Kraftwerks dar. In Abhängigkeit der verbauten Maschine sind mit dieser Verbindung häufig eine oder mehrere baulich bedingte Umlenkungen der Strömung verbunden. Im Fall von horizontalachsigen Kaplan- oder Propellerturbinen muss die Strömung meist unter dem stromab aufgestellten Generator in das Unterwasser geleitet werden. Hierzu lenkt ein erster Saugrohrkrümmer die Strömung diagonal nach unten, während ein zweiter Krümmer auf Höhe der Sohle wieder einen horizontalen Zulauf in das Unterwasser garantiert. Diese doppelt gekrümmten Saugrohre verleihen den zugehörigen Anlagen den charakteristischen Namen S-Turbine oder S-Saugrohr [1].
In seiner zweiten Funktion wandelt das Saugrohr einen Teil der am Laufradaustritt vorherrschenden kinetischen Energie in Druckenergie um. Eine Umwandlung dieser Art korreliert direkt mit einer Verlangsamung der Strömung und somit mit der durchströmten Querschnittsfläche, weshalb ein Saugrohr - zumindest in Teilen - einem Diffusor gleicht. Die Diffusorwirkung des Saugrohrs führt rückwirkend zu einer Absenkung des statischen Drucks in der Laufradaustrittsebene. Da das Druckniveau stromauf des Laufrads vom Oberwasser bestimmt wird, erhöht sich dank des Saugrohrs die über dem Laufrad anliegende Druckdifferenz und letztlich die Leistungsabgabe der Turbine. Eine Verringerung der Strömungsgeschwindigkeit hat zusätzlich den positiven Effekt, dass die quadratisch mit der Geschwindigkeit korrelierenden Austrittsverluste reduziert werden können [2].
Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
Quelle: | Wasserwirtschaft - Heft 09 (September 2019) |
Seiten: | 4 |
Preis: | € 10,90 |
Autor: | Fabian Hankeln Prof. Dr.-Ing. Stefan Riedelbauch |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Rechtliche und praktische Unsicherheiten bei der Durchführung des europäischen Klimaanpassungsrechts durch das Bundes- Klimaanpassungsgesetz (KAnG)
© Lexxion Verlagsgesellschaft mbH (6/2025)
In the context of the European Climate Law (EU) 2021/1119), the Governance Regulation (EU) 2018/1999 and the Nature Restoration Regulation (EU) 2024/1991, the KAnG came into force on July 1, 2024.
Transformatives Klimarecht: Raum, Zeit, Gesellschaft
© Lexxion Verlagsgesellschaft mbH (6/2025)
This article contends that climate law should be conceived as inherently transformative in a double sense. The law not only guides the necessary transformation of economy and society, but is itself undergoing transformation.
Maßnahmen zur Klimaanpassung sächsischer Talsperren
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (5/2025)
Die Landestalsperrenverwaltung des Freistaates Sachsen (LTV) betreibt aktuell insgesamt 87 Stauanlagen, darunter 25 Trinkwassertalsperren. Der Stauanlagenbestand ist historisch gewachsen und wurde für unterschiedliche Zwecke errichtet.