Der Artikel diskutiert Möglichkeiten, mittels gekoppelter Modellierung und Monitoring das physikalische Verhalten von Staumauern umfassender zu analysieren. Das in einem früheren Stadium erstellte und kalibrierte Modell wird mit den Belastungen des realen Bauwerks in einem späteren und längeren Zeitraum gerechnet und kann daher als digitaler Zwilling erachtet werden. Dieser kann genutzt werden, um im Falle von zu großer Diskrepanz zwischen Modell- und Strukturantwort Hinweise auf strukturelle Änderungen zu liefern.
1 Einleitung
Viele Staumauern wurden am Anfang des zwanzigsten Jahrhunderts gebaut. Nach mehr als hundert Jahren des Betriebs haben sich möglicherweise die strukturellen Eigenschaften der Bauwerke verändert. Gründe können chemische Effekte, Rissbildung oder innere Erosion sein. Generell ist davon auszu gehen, dass sich die Materialeigenschaften der Staumauern zumindest lokal verändert haben. Diese Änderungen können auf das physikalische Verhalten der Bauwerke Einfluss haben, was sich z. B. in einer erhöhten Durchsickerung oder einer stärkeren Deformation in Folge von mechanischen oder thermischen Lasten äußert. Für den sicheren Betrieb von Stauanlagen ist eine Überprüfung des physikalischen Verhaltens der Staumauern in definierten Zeitabständen durchzuführen (Monitoring). Dies geschieht in der Regel durch das Aufzeichnen von physikalischen Größen mit geeigneter Sensorik und deren manueller Prüfung bezüglich unerwarteter Strukturantworten. Insbesondere wird das Verhalten mit Messungen aus vorherigen Zeiträumen verglichen, ohne unbedingt sämtliche physikalischen Interaktionen und geänderte Randbedingungen in Betracht zu ziehen. Dieses klassische Vorgehen wird in diesem Beitrag um eine Kopplung mit einer numerischen Analyse der Staumauer er weitert. Dazu wird die Geometrie der Staumauer der Fürwiggetalsperre in ein 3dimensionales FiniteElementeModell überführt (Bild 1). Der getätigten Analyse liegen zweiphasige thermohydromechanische Beziehungen zu Grunde, die es erlauben, sämtliche physikalischen Effekte und deren Interaktionen möglichst präzise zu erfassen [1]-[5]. Das Modell wird über die gemessenen äußeren Bedingungen, wie Stauhöhe und jahreszeitlich variierende Temperaturen, gesteuert (Bild 2).
Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
Quelle: | Wasserwirtschaft - Heft 04 - 2019 (Mai 2019) |
Seiten: | 4 |
Preis: | € 10,90 |
Autor: | Prof. Dr.-Ing. Volker Bettzieche Dr. rer. nat. Tom Lahmer Dr.-Ing. Long Nguyen-Tuan |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Rechtliche und praktische Unsicherheiten bei der Durchführung des europäischen Klimaanpassungsrechts durch das Bundes- Klimaanpassungsgesetz (KAnG)
© Lexxion Verlagsgesellschaft mbH (6/2025)
In the context of the European Climate Law (EU) 2021/1119), the Governance Regulation (EU) 2018/1999 and the Nature Restoration Regulation (EU) 2024/1991, the KAnG came into force on July 1, 2024.
Transformatives Klimarecht: Raum, Zeit, Gesellschaft
© Lexxion Verlagsgesellschaft mbH (6/2025)
This article contends that climate law should be conceived as inherently transformative in a double sense. The law not only guides the necessary transformation of economy and society, but is itself undergoing transformation.
Maßnahmen zur Klimaanpassung sächsischer Talsperren
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (5/2025)
Die Landestalsperrenverwaltung des Freistaates Sachsen (LTV) betreibt aktuell insgesamt 87 Stauanlagen, darunter 25 Trinkwassertalsperren. Der Stauanlagenbestand ist historisch gewachsen und wurde für unterschiedliche Zwecke errichtet.