Kohlenstoff- und Stickstoffbilanzen bei der in-situ Belüftung von Altablagerungen

Deponien sind sehr uneinheitliche Strukturen, u.a. wegen der großen Unterschiede im abgelagerten Abfall, dem Alter, klimatischen Gegebenheiten und der verwendeten Deponietechnik. Es lassen sich nichtsdestotrotz allgemeine Gesetzmäßigkeiten ableiten. Alte Hausmüllablagerungen z.B., die nicht vorbehandelte Abfälle enthalten, können jahrhundertelang problematische Stoffe über das Sickerwasser emittieren, während man davon ausgeht, dass Deponiegasemissionen mehrere Jahrzehnte nach Ablagerungsende ein umweltverträgliches Maß erreichen.

Die in-situ Belüftung von Deponien ist eine Methode, um das Emissionspotential langfristig zu reduzieren. In welchem Ausmaß die Methode tatsächlich zur nachhaltigen Reduktion der Deponieemissionen beitragen kann, lässt sich allerdings aufgrund der hohen Komplexität der Materie schwierig quantifizieren. Eine Möglichkeit zumindest ansatzweise die Reduzierung zukünftiger Emissionen zu beurteilen stellen detaillierte Stoffbilanzen dar. In diesem Beitrag werden sowohl Kohlenstoff- als auch die Stickstoffbilanzen während eines in-situ Belüftungsexperiments präsentiert.

Dabei zeigt sich, dass der Wasserhaushalt einen speziellen Einfluss auf den Belüftungsprozess hat. Überraschenderweise wurde die Kohlenstoffbilanz durch die Wasserführung kaum beeinflusst, während sich ein starker Einfluss auf die Stickstoffbilanz zeigte. Durch optimale Wasserführung konnte im Labor der Prozess in Richtung Denitrifikation und der Bildung von schadlosem N2 gesteuert werden. Auf der anderen Seite wurde gezeigt, dass ohne Wasserzugabe die Formationvon stark klimawirksamen Lachgas (N2O) verstärkt wird. Die hier präsentierte Arbeit erhöht das Prozessverständnis bei der in-situ Belüftung und soll dabei helfen, das Verfahren zukünftig besser beurteilen zu können.



Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Quelle: Recy & Depotech 2016 (November 2016)
Seiten: 6
Preis: € 3,00
Autor: Dr. Christian Brandstätter
Dr. Roman Prantl
Ass. Prof. Dipl.-Ing. Dr. techn. Johann Fellner
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.