Over the last decades the German cement industry has gained lots of experience in theuse of alternative fuels in the clinker burning process. The share of suitable alternative fuels could be increased continuously. In 2013 almost 62 % of the overall thermal energy demand of the German clinker kilns was substituted via alternative fuels. The recovery process of energy and material is carried out in an environmentally safe manner. This is proven by continuous and periodic control of the emissions of the major pollutants.Furthermore, the alternative fuels are subject to a quality assurance system if necessary. Untreated mixed municipal wastes are not a suitable material for the clinker burning process. The use of alternative fuels does not only lead to a preservation of natural resources. It also delivers a significant contribution to the reduction of fossil fuel related greenhouse gas emissions. In the meantime, the use of suitable alternative materials in the cement industry is also considered as Best Available Technique (BAT).
As the essential constituent in concrete cement plays a key role for the development of a modern society. With cement clinker burning being the major step in the production chain cement manufacturing as such is an energy and resource intensive process. However, due to its specific characteristics, the clinker burning process offers excellent opportunities to environmentally beneficial waste-to-energy and material recycling applications which can significantly provide for energy and resource savings. The decisive major features for waste processing can be summarized as follows:
- maximum gas temperatures of 2,000 °C in the rotary kiln (main firing system)
- gas retention times of about 8 seconds at temperatures above 1,200 °C in the kilns
- oxidizing gas atmosphere in the rotary kilns
- sufficient gas retention times of more than 2 s at temperatures above 850 °C in the secondary firing
- uniform burnout conditions due to the high thermal capacity of the rotary kilns
- complete destruction of dioxins and furans due to the high temperatures
- sorption of gaseous components like HF, HCl, SO2 on alkaline reactants
- high retention capacity for particle-borne heavy metals
...
Copyright: | © Wasteconsult International |
Quelle: | Waste-to-Resources 2015 (Mai 2015) |
Seiten: | 8 |
Preis: | € 0,00 |
Autor: | Martin Oerter |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.