Erzeugung qualitativ hochwertiger Heupellets für eine energetische Nutzung

Gegenwärtig werden über 70 % der erneuerbaren Wärme in Deutschland in Holzfeuerungen kleiner und mittlerer Leistung erzeugt. Durch politische Forderungen, den Anteil der erneuerbaren Energien an der Wärmeversorgung bis 2020 von 6,6 % (2007) auf 14 % nahezu zu verdoppeln, gerät die bislang favorisierte Nutzung hochqualitativer Holzbrennstoffe aus ökologischer und ökonomischer Sicht an ihre Grenzen. Die Erweiterung der Rohstoffbasis durch den Einsatz alternativer biogener Brennstoffe kann in diesem Zusammenhang einen bedeutenden Beitrag leisten, um die regionale und nationale Versorgungssicherheit zu erhöhen.

Um den Einsatz alternativer Biomassen und biogener Reststoffe für eine energetische Nutzung zu erleichtern und Unsicherheiten zu überwinden, werden in der DIN EN 14961-6 die möglichen Einsatzstoffe definiert und die für die Normung geforderten Eigenschaften festgelegt. Mit der im April 2012 verabschiedeten DIN EN 14961-6, die sich explizit auf alternative Rohstoffe bezieht, wurde der Grundstein für die zukünftige Nutzung bisher weitgehend ungenutzter Rohstoffe gelegt. Energiepflanzen aber auch biogene Reststoffe, wie Landschaftspflegeheu, zeigen dabei ein enormes Potenzial. Vor diesem Hintergrund wird im Rahmen dieses Beitrages die Herstellung qualitativ hochwertiger Heupellets für eine energetische Nutzung vorgestellt. Fünf unterschiedliche Heuchargen aus der Region Havelland wurden auf ihre Pelletierfähigkeit untersucht. Rohstoff- und Prozessparameter einer typischen Halmgutpelletierung sowie Auswirkungen einer Additivierung auf die physikalisch-mechanischen Eigenschaften der Pellets waren Gegenstand der Untersuchungen. Die Pelletierung erfolgte mit Hilfe eine Ringmatrizenpresse im Technikumsmaßstab. Durch gezielte Parametereinstellung konnten Heupellets mit Abriebfestigkeiten von bis zu 98,8 Ma.-% und Schüttdichten von bis zu 670 kg/m3 hergestellt werden. Die Zugabe von Additiven, wie Kaolin, Ca(OH)2 bzw. CaCO3, hatte keinen wesentlichen Einfluss auf die physikalisch-mechanischen Pelleteigenschaften.



Copyright: © Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock
Quelle: 6. Rostocker Bioenergieforum (Juni 2012)
Seiten: 8
Preis: € 0,00
Autor: Dipl.-Ing. Claudia Kirsten
Andreas Pilz
 
 Artikel nach Login kostenfrei anzeigen
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.