Perspectives of the Energy Turnaround

Our modern industrial society is facing serious challenges arising from the world’s growing need for energy and the predicted climate change. Energy supply as the biggest source of carbon dioxide emissions will have to undergo a radical transition towards sustainability over the next few decades.

If global warming is to remain below 2 °C with respect to pre-industrial times, the atmospheric concentration of CO2 has to be limited. Since the power sector is responsible for a relatively large portion of total greenhouse gas emissions, special attention should be given to its decarbonization. Thus, fossil fuels must be substituted by low or zero emission renewable energy carriers. These include biomass and hydro power, with solar and wind power as the leading energy sources of the future. As biomass is facing issues with conflicting land use and big hydro power projects are often met with resistance within the population, the long-term growth potentials of these technologies remain limited. Wind and solar energy plants on the other hand can be erected with fewer restrictions wherever the conditions are favorable. The amount of energy supplied by 100 % renewables can fluctuate widely.
In a so-called "electricity-based" infrastructure, large-scale facilities for conversion and storage of excess energy have to be implemented in order to ensure a reliable energy supply. Hydrogen from the electrolysis of water and carbon dioxide from industrial processes or refined from air can serve as raw materials for the production of hydrocarbons. In addition, this conversion of electricity into chemical energy carriers like methane opens up the possibility of supplying the sectors of mobility, raw-material production and heat with clean energy. While certain modes of transport like individual motor car traffic can easily be electrified, others like heavy duty traffic will still require liquid fuels due to their high energy density. These fuels can be supplied through conversion processes based on regenerative electricity. Similarly, other conversion products can be used as input for raw-material production. 
 



Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Quelle: Depotech 2012 (November 2012)
Seiten: 8
Preis: € 4,00
Autor: M.Sc. Dipl.-Ing. (FH) Sebastian Egner
Dipl.-Ing. Wolfgang Krätschmer
Prof. Dr.-Ing. Martin Faulstich
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.