Perspektiven der Energiewende

Fossile Rohstoffe sind derzeit die tragende Säule unserer modernen Industriegesellschaft. Die Abhängigkeit von einer sicheren Energieversorgung machte bisher die Nutzung fossiler Ener-gieträger erforderlich. So sind die Anteile von Erdöl (34 %), Erdgas (24 %) und Kohle (30 %) am globalen Primärenergieverbrauch (ohne Biomasse) mit Abstand am Größten (BGR 2011).
Vor diesem Hintergrund ist es aufschlussreich, die derzeitige Nutzung der fossilen Rohstoffe näher zu betrachten. Wie in Abb. 1 dargestellt, werden von den jährlich geförderten 4 Mrd. Tonnen Erdöl etwa 50 % im Mobilitätssektor, 32 % für die Wärmebereitstellung und rund 8 % für die Stromerzeugung verbraucht. Lediglich rund 10 % werden stofflich in der che-mischen Industrie eingesetzt (BASF 2007, Marshall 2007).

Der steigende Energiebedarf der Welt und der drohende Klimawandel stel-len die gegenwärtige Industriegesellschaft vor große Herausforderungen. Um das von der Staatengemeinschaft akzeptierte 2 °C-Ziel einhalten zu können, müssen insbesondere die hohen, aus der Energiebereitstellung resultierenden CO2-Emissionen vermieden werden. Die Dekarbonisie-rung des Energiesektors durch die Umstellung auf Erneuerbare Energien und die Implementierung einer strombasierten Infrastruktur sind dabei eng miteinander verzahnt. Windenergie wird vermutlich den größten Teil des zukünftigen Energiemixes stellen. Der daraus erzeugte Strom kann entweder gespeichert oder aber in zentralen Anlagen zur Elektrolyse von Wasser verwen-det werden. Aus Wasserstoff und Kohlenstoffdioxid können dann Produkte wie Methan oder flüssige Kohlenwasserstoffe synthetisiert werden. Mit den so erzeugten Energieträgern lassen sich auch die Sektoren Wärme, und Mobilität sowie die Grundstoffindustrie auf eine regenerative Basis stellen. Die dargestellten Ansätze zeigen, dass eine nachhaltige Industriegesellschaft prinzipiell möglich ist und keine ferne Vision bleiben muss.



Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Quelle: Depotech 2012 (November 2012)
Seiten: 8
Preis: € 4,00
Autor: M.Sc. Dipl.-Ing. (FH) Sebastian Egner
Dipl.-Ing. Wolfgang Krätschmer
Prof. Dr.-Ing. Martin Faulstich
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.