Re-Use von Lithium-Ionen-Zellen und - Modulen aus Elektrofahrzeug-Batterien

Elektrische Energie stellt eine universell einsetzbare und sehr hochwertige Sekundärenergie dar, die bestens steuerbar und auf die augenblickliche Nutzung mit hohem Wirkungsgrad anpassbar ist, auch mit Wirkungsgraden von über 95% in mechanische Energie umgeformt werden kann, und deren Bereitstellung aus erneuerbaren Quellen selbst in kleinem Maßstab effizient realisiert wird (Photovoltaik). Nachteilig sind die mit elektrischer Energie verbundenen hohen Kosten und die sehr begrenzte direkte Speicherfähigkeit elektrischer Energie, beispielsweise in elektrochemischen Batterien. Elektrische Antriebe für Fahrzeuge sind seit mehr als 100 Jahren erfolgreich im Einsatz, wobei die elektrische Energie dem Fahrzeug kontinuierlich zugeführt wird (Oberleitung, Stromabnehmer). Die Speicherung elektrischer Energie auf einem Fahrzeug zur weiteren Nutzung als Antriebsenergie ist mit hoher Masse und hohen Kosten verbunden. Mittels Batterien auf Lithium-Ionen-Basis können Reichweiten von mehr als 100 km in PWK-üblichen Fahrzeugen erreicht werden.

Lithium-Ionen-Zellen bilden die Basis für dem Stand der Technik entsprechende Traktionsbatterien für Elektrofahrzeuge, die sich in Bezug auf Fahrverhalten und Komfort an Standard-PKWs anlehnen, wegen der elektrochemischen Energiespeicherung in der Batterie jedoch eine wesentlich niedrigere Reichweite aufweisen. Die Traktionsbatterien sind im Fahreinsatz bezüglich Temperatur, Spitzenleistung und Entladungstiefe hoch beansprucht, sodass nach einigen Tausend Zyklen das Ende der Nutzungsdauer wegen reduzierter Kapazität erreicht ist. Auch im Falle des Defektes einer einzigen Zelle der Batterie wird eine reparierte Batterie aus Sicherheitsgründen nicht mehr im Fahrzeug weiter verwendet werden. 'Re-Use" zielt auf eine stationäre Nutzung zur Bereitstellung der elektrischen Ausfallenergie erneuerbarer Energieträger (Photovoltaik, Wind). Vor diesem neuen Einsatz werden die Zellen einer eingehenden Untersuchung in Bezug auf Kapazität und Temperaturverhalten unterzogen. Experimentelle Ergebnisse der Untersuchung von Zellen, die in voller Absicht extremer Fehlnutzung unterworfen wurden, weisen die Robustheit neuartiger Zellen und damit deren Weiterverwendungsfähigkeit nach. Aus den verwendeten Methoden und Messschaltungen im Labor werden Schlüsse auf Gerätekonzepte für industriellen Einsatz gezogen.



Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Quelle: Depotech 2012 (November 2012)
Seiten: 4
Preis: € 2,00
Autor: O.Univ.-Prof. Dipl.-Ing. Dr.techn. Helmut Weiss
Ing. DI Dr. Astrid Arnberger
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.