Treibhausgasemissionen und Stickstoffumsetzungsprozesse in Pflanzenkohle-Böden

Seit Beginn der Industrialisierung und der "grünen" Revolution in der Landwirtschaft sind die Treibhausgase CO2, N2O und CH4 in der Atmosphäre auf Werte gestiegen, die uns vermutlich in einem geologischen Wimpernschlag 20 Millionen Jahre und weiter zurück in die Erdgeschichte katapultieren. Angetrieben durch unser Handeln steigen die THG-Konzentrationen rasch weiter an; Möglichkeiten zur Minderung werden händeringend gesucht. Die Verwendung von pyrogenem biochar oder HTC-Kohle in Böden oder Pflanzsubstraten führt häufig zu einer Verringerung der Lachgas-Emissionen aus Böden. Hierzu liegen mittlerweile erste experimentelle Daten aus der ganzen Welt vor, von China, Australien, den USA und Kanada bis Europa. Aber selbst wenn biochar Anfangs gute Effekte hat: Weiche Effekte hat es langfristig? Liegt hier vielleicht eine verborgene Gefahr, weil Kohlenstoffreichere Boden in der Regel auch ein größeres Potential für z.B. Lachgasemissionen besitzen? Der vorliegende Beitrag beleuchtet den derzeitigen Wissensstand zum Thema THG-Flüsse, N-Umsetzungen und Pflanzenkohle.

Generell ist vermutlich produktionsfrisches Biochar das mittel der Wahl, wenn Minderungen von N2O-Emissionen in der Landwirtschaft erreicht werden sollen. Mit der Zeit verringert sich diese anfängliche Reduktion wahrscheinlich. Dabei wird es von der Kohleart und dem jeweiligen Boden abhängen wie lange die Reduktions-wirkung anhält (in einem Feldversuch in China nun 2 Jahre).
Bezüglich der langfristigen Wirkung von Biochar in Böden v.a. auf die THGEmissionen ist vorsichtiger Optimismus angebracht: Die untersuchten Langzeit- Analoge "Mitkompostiert", "Regenwurmverdaut", Terra preta und Köhlereiböden (temperate Klimazone) gaben alle keinen Anlass zur Besorgnis, im Gegenteil. Vor allem die beobachtete Steigerung des Methanverzehrs im Oberboden der Köhlereiböden ist interessant und eine Verstärkung der Lachgasemissionen aus Böden, die durch/mit Biochar reich an organischem Kohlenstoff sind, scheint nicht zu befürchten zu sein.
 
 



Copyright: © HAWK Hochschule für angewandte Wissenschaft und Kunst - Fakultät Ressourcenmanagement
Quelle: 73. Symposium 2012 (Oktober 2012)
Seiten: 14
Preis: € 0,00
Autor: Prof. Dr. Claudia Kammann
 
 Artikel nach Login kostenfrei anzeigen
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Europäische Rechtsvorgaben und Auswirkungen auf die Bioabfallwirtschaft in Deutschland
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Bioabfälle machen 34 % der Siedlungsabfälle aus und bilden damit die größte Abfallfraktion im Siedlungsabfall in der EU. Rund 40 Millionen Tonnen Bioabfälle werden jährlich in der EU getrennt gesammelt und in ca. 4.500 Kompostierungs- und Vergärungsanlagen behandelt.

Vom Gärrest zum hochwertigen Gärprodukt - eine Einführung
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Auch mittel- bis langfristig steht zu erwarten, dass die Kaskade aus anaerober und aerober Behandlung Standard für die Biogutbehandlung sein wird.

Die Mischung macht‘s - Der Gärrestmischer in der Praxis
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Zur Nachbehandlung von Gärrest aus Bio- und Restabfall entwickelte Eggersmann den Gärrestmischer, der aus Gärresten und Zuschlagstoffen homogene, gut belüftbare Mischungen erzeugt. Damit wird den besonderen Anforderungen der Gärreste mit hohem Wassergehalt begegnet und eine effiziente Kompostierung ermöglicht.