In einem Batch-Versuch wurde mithilfe der In-Sacco-Methode der Abbauverlauf und Abbaugrad der Gerüstsubstanzen einer Grassilage mit und ohne Einsatz einer Enzymmischung gegenübergestellt. Dazu wurden in einem Silierversuch Laborsilagen angelegt und nach 90 Tagen Silierdauer in einem
In-Sacco-Batch-Versuch vergoren. In den ersten 10 Versuchstagen ist ein deutlich
höherer Abbau der Gerüstsubstanzen NDF und ADF bei den mit Enzymen behandelten
Grassilagen zu erkennen. Es konnte deutlich herausgestellt werden, dass
der Einsatz von Enzymmischungen den Abbau der Pflanzenfasern beschleunigt.
Dadurch wird das Raum-Zeit-Verhältnis beim anaeroben Abbau positiv verschoben,
d.h. dass Substrate schneller umgesetzt werden können und sich dadurch die Verweilzeiten
in Biogasanlagen theoretisch verkürzen.
Das Repowering bestehender Biogasanlagen rückt immer mehr in den Fokus der Anlagenbetreiber. Neben technischen Ertüchtigungen der Biogasanlage und einem optimalen Substratmix, ist auch eine Steigerung der Fütterungsmenge möglich, um die Leistung der Anlage zu steigern. Dadurch kommt es bei bestehenden Anlagen zu einer Verkürzung der hydraulischen Verweilzeit der Substrate im Fermenter, wenn die Fermentervolumina nicht erweitert werden. Um das Substrat trotzdem vollständig auszunutzen, wird in diesem Versuch untersucht, ob der Einsatz von Enzymmischungen im Fermenter den Abbau der Pflanzenfaser beschleunigt. In Praxisanlagen werden Enzymmischungen zurzeit eingesetzt, wobei der Anlagenbetreiber eine Wirkung nur subjektiv beurteilen kann. Oft wird von Verbesserungen der Rührfähigkeit des Fermenterschlammes bei Enzymzugabe berichtet. Der Fermenterschlamm ist eine nicht-newtonsche Flüssigkeit, was den Einsatz von Messtechnik zur Bestimmung der Viskosität schwierig gestaltet. Der Nachweis einer Enzymwirkung auf diesem Wege ist schwierig. Weil auch der Einsatz von Maissilage in Biogasanlagen und die damit verbundene Flächenbindung für die Energieproduktion in der Öffentlichkeit kontrovers diskutiert wird, konzentrieren sich diese Untersuchungen auf das Abbauverhalten von Grassilagen während der Fermentation.
Copyright: | © Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock |
Quelle: | 5. Rostocker Bioenergieforum (November 2011) |
Seiten: | 7 |
Preis: | € 0,00 |
Autor: | Dipl.-Ing. Claudia Demmig Frank Höppner Dr. Dirk Banemann Prof. Dr. Michael Nelles |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.